Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Int J Biol Macromol ; 253(Pt 3): 126870, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703966

RESUMO

Cancer drugs usually have side effects in chemotherapy. Apoptin, a protein recognized by its good therapeutical effect on tumors and innocuous to body, is employed to treat hepatocellular carcinoma (HCC). As our previous data shown, the efficiency of apoptin protein might be limited by the protein of apaf-1. Therefore, we designed the multi-functional nanoparticles (MFNPs) encapsulating apoptin and apaf-1 plasmids by layer-by layer assembly. The NPs could release drugs into tumor site specifically and had good compatibility to normal cells and tissues. The groups of biotin, ε-polylysine, and nuclear localization signal in MFNPs conferred NPs the capabilities to enter cancer cells specifically, escape lysosome and enter the nucleus, respectively. In vitro inhibition experiment and in vivo anti-tumor therapy confirmed MFNPs as an excellent carrier to treat HCC. In addition, the dual-drug system was superior to any of the single-drug system. The mechanism analysis proved that supplement of the protein of apaf-1 might enhance apoptosome formation, causing the increase of therapeutical efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Proteínas do Capsídeo/genética , Apoptose , Plasmídeos/genética
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108258

RESUMO

Increased oxidative stress and neuroinflammation play a crucial role in the pathogenesis of Parkinson's disease (PD). In this study, the expression levels of 52 genes related to oxidative stress and inflammation were measured in peripheral blood mononuclear cells of the discovery cohort including 48 PD patients and 25 healthy controls. Four genes, including ALDH1A, APAF1, CR1, and CSF1R, were found to be upregulated in PD patients. The expression patterns of these genes were validated in a second cohort of 101 PD patients and 61 healthy controls. The results confirmed the upregulation of APAF1 (PD: 0.34 ± 0.18, control: 0.26 ± 0.11, p < 0.001) and CSF1R (PD: 0.38 ± 0.12, control: 0.33 ± 0.10, p = 0.005) in PD patients. The expression level of APAF1 was correlated with the scores of the Unified Parkinson's Disease Rating Scale (UPDRS, r = 0.235, p = 0.018) and 39-item PD questionnaire (PDQ-39, r = 0.250, p = 0.012). The expression level of CSF1R was negatively correlated with the scores of the mini-mental status examination (MMSE, r = -0.200, p = 0.047) and Montréal Cognitive Assessment (MoCA, r = -0.226, p = 0.023). These results highly suggest that oxidative stress biomarkers in peripheral blood may be useful in monitoring the progression of motor disabilities and cognitive decline in PD patients.


Assuntos
Fator Apoptótico 1 Ativador de Proteases , Fator Estimulador de Colônias de Macrófagos , Doença de Parkinson , Humanos , Fator Apoptótico 1 Ativador de Proteases/genética , Disfunção Cognitiva , Leucócitos Mononucleares , Testes de Estado Mental e Demência , Doença de Parkinson/diagnóstico , Receptores Proteína Tirosina Quinases/genética , Receptores de Fator Estimulador de Colônias/genética , Regulação para Cima , Fator Estimulador de Colônias de Macrófagos/metabolismo
3.
Exp Mol Med ; 55(4): 860-869, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009805

RESUMO

The loss of cardiomyocytes (CMs) after myocardial infarction (MI) is widely acknowledged to initiate the development of heart failure (HF). Herein, we found that circCDYL2 (583 nt) derived from chromodomain Y-like 2 (Cdyl2) is significantly upregulated in vitro (oxygen-glucose deprivation (OGD)-treated CMs) and in vivo (failing heart post-MI) and can be translated into a polypeptide termed Cdyl2-60aa (~7 kDa) in the presence of internal ribosomal entry sites (IRES). Downregulation of circCDYL2 significantly decreased the loss of OGD-treated CMs or the infarcted area of the heart post-MI. Additionally, elevated circCDYL2 significantly accelerated CM apoptosis via Cdyl2-60aa. We then discovered that Cdyl2-60aa could stabilize protein apoptotic protease activating factor-1 (APAF1) and promote CM apoptosis; heat shock protein 70 (HSP70) mediated APAF1 degradation in CMs by ubiquitinating APAF1, which Cdyl2-60aa could competitively block. In conclusion, our work substantiated the claim that circCDYL2 could promote CM apoptosis via Cdyl2-60aa, which enhanced APAF1 stability by blocking its ubiquitination by HSP70, suggesting that it is a therapeutic target for HF post-MI in rats.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Proteínas/genética , Apoptose , Peptídeos/metabolismo , Ubiquitinação , Infarto do Miocárdio/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo
4.
Front Biosci (Landmark Ed) ; 28(2): 29, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36866552

RESUMO

BACKGROUND: The Apoptotic protease activating factor 1 (Apaf-1) protein, as one of the factors involved in the activation of the mitochondrial apoptotic pathway, plays an important role in cancer biology. Apaf-1 expression in tumour cells has been shown to be downregulated, with significant implications for tumour progression. Hence, we investigated the expression of Apaf-1 protein in the Polish population of patients with colon adenocarcinoma without any therapy prior to radical surgery. Moreover, we assessed the relation between Apaf-1 protein expression and the clinicopathological factors. The prognostic activity of this protein was analyzed in relation to 5-year survival of patients. In order to show the localization of Apaf-1 protein at the cellular level, the immunogold labelling method was used. METHODS: The study was conducted using the colon tissue material from patients with histopathologically confirmed colon adenocarcinoma. Immunohistochemical expression of Apaf-1 protein was performed using Apaf-1 antibody at dilution 1:600. The associations between the immunohistochemistry (IHC) expression of Apaf-1 and clinical parameters were analyzed using the Chi2 test and Chi2Yatesa test. Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Apaf-1 expression and 5-year survival rate of patients. The results were considered statistically significant when p < 0.05. RESULTS: Apaf-1 expression was evaluated by immunohistochemical staining in whole tissue sections. Thirty-nine (33.23%) samples had strong Apaf-1 protein expression and 82 (67.77%) samples were characterized by low expression. The high expression of Apaf-1 was clearly correlated with the histological grade of the tumour (p = 0.001), proliferating cell nuclear antigen (PCNA) immunohistochemical expression (p = 0.005), age (p = 0.015), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). The 5-year survival rate was significantly higher in the group of patients with high expression of this protein (log-rank, p < 0.001). CONCLUSIONS: We can conclude that Apaf-1 expression is positively correlated with reduced survival of colon adenocarcinoma patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Prognóstico , Fator Apoptótico 1 Ativador de Proteases , Peptídeo Hidrolases
5.
Int. j. morphol ; 40(6): 1574-1578, dic. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1421819

RESUMO

SUMMARY: Cadmium is a highly toxic metal and affects the respiratory mucosa. The aim of the study is to show the inflammation and degenerative effect of cadmium on the olfactory mucosa. In this study, eight-week-old Wistar rats with an average weight of 170-190 g were divided into two groups (control and experiment) with 20 animals in each group and used in the experiments. The rats in the experimental group were given 2 mg/kg/day powdered cadmium chloride dissolved in water intraperitoneally every day for two weeks. At the end of the experiment, the nasal cavity was completely removed with anesthesia. Concha nasalis superior was separated, fixed with zinc-Formalin solution and decalcified with 5 % EDTA (Ethylene-diaminetetraacetic acid). After routine histopathological procedure, APAF-1 antibody was used for expression of Hematoxylin-Eosin (HE) and immunohistochemistry. Histopathological examination revealed interruptions in the basement membrane structure due to cadmium and degenerative changes in stem cells, degeneration in sensory cells and pycnosis in nuclei, dilatation in blood vessels and increased inflammation in connective tissue. APAF-1 expression was found to increase in epithelial cells and olfactory glands (Bowman gland) cells. It has been thought that cadmium toxicity increases cell degeneration and inflammation in the olfactory mucosa and may significantly affect cell death and olfactory metabolism by inducing the pro-apoptotic process.


El cadmio es un metal altamente tóxico que afecta la mucosa respiratoria. El objetivo fue mostrar el efecto inflamatorio y degenerativo del cadmio sobre la mucosa olfativa. En este estudio, ratas Wistar de ocho semanas de edad con un peso promedio de 170-190 g se dividieron en dos grupos (control y experimental) con 20 animales en cada grupo. Las ratas del grupo experimental recibieron 2 mg/kg/día de cloruro de cadmio en polvo disuelto en agua por vía intraperitoneal todos los días durante dos semanas. En los animales se exirpó la cavidad nasal bajo anestesia. Se separó la concha nasal superior, se fijó con solución de zinc-Formalina y se descalcificó con EDTA (ácido etilendiaminotetraacético) al 5 %. Después del procedimiento histopatológico de rutina, Hematoxilina- Eosina (HE) e inmunohistoquímica, se utilizó el anticuerpo APAF-1. El examen histopatológico reveló interrupciones en la estructura de la membrana basal debido al cadmio y cambios degenerativos en las células madre, degeneración en las células sensoriales y picnosis en los núcleos, dilatación de los vasos sanguíneos y aumento de la inflamación en el tejido conjuntivo. Se encontró que la expresión de APAF-1 aumenta en las células epiteliales y en las células de las glándulas olfatorias (glándulas de Bowman). Se ha pensado que la toxicidad del cadmio aumenta la degeneración celular y la inflamación en la mucosa olfativa y puede afectar significativamente la muerte celular y el metabolismo olfativo al inducir el proceso proapoptótico.


Assuntos
Animais , Ratos , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/patologia , Cloreto de Cádmio/toxicidade , Administração Intranasal , Imuno-Histoquímica , Ratos Wistar , Fator Apoptótico 1 Ativador de Proteases
6.
Phytomedicine ; 107: 154456, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152592

RESUMO

BACKGROUND: Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is an important simple phenolic compound mainly derived from Syzygium aromaticum and many other plants. It is traditionally used in ayurveda and aromatherapy for the healing of many health problems. It also has significant applications in dentistry, agriculture, and flavour industry. This simple phenol has an eclectic range of pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. It is regarded as safe by the Food and Agricultural Organization of the United Nations due to its non-carcinogenic and non-mutagenic properties. PURPOSE: The aim of this comprehensive review is to present a critical and systematic assessment of the antitumor ability of eugenol and its associated molecular targets in various cancers. METHODS: It was carried out following the preferred reporting items for systematic reviews and meta-analysis guidelines. Risk of bias assessment was performed using the SYstematic review centre for laboratory animal experimentation guidelines. The literature search was performed in standard databases such as Science Direct, PubMed, Google Scholar, Scopus, and Web of Science using the keywords 'eugenol' or 'eugenol essential oil' and 'anti-cancer properties of eugenol'. RESULTS: The scientific information from fifty-three studies was encompassed in the present review work. Eugenol exhibits significant anticancer effects in a variety of biological pathways, namely apoptosis, autophagy, cell cycle progression, inflammation, invasion, and metastasis. Eugenol-induced apoptosis has been noticed in osteosarcoma, skin tumors, melanoma, leukemia, gastric and mast cells. It decreases the expression of cyclin D1, cyclin B, proliferating cell nuclear antigen, nuclear factor-ƙB, inhibitor of nuclear factor ƙB, and B-cell lymphoma-2. Eugenol increases the expression of B-cell lymphoma-2 (BCL-2) associated X, BH3-interacting domain death agonist, BCL-2 associated agonist of cell death, apoptotic protease activating factor 1, cytochrome c, p21, and p53. CONCLUSION: The anticancer potential exhibited by eugenol is mainly attributed to its anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic, and autophagic effects. Hence, the use of eugenol alone or along with other chemotherapeutic anticancer agents is found to be very effective in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Óleos Voláteis , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes , Fator Apoptótico 1 Ativador de Proteases , Ciclina B , Ciclina D1 , Citocromos c , Eugenol/farmacologia , Eugenol/uso terapêutico , Neoplasias/tratamento farmacológico , Fenóis , Antígeno Nuclear de Célula em Proliferação , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Supressora de Tumor p53
7.
Adv Sci (Weinh) ; 9(28): e2201889, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35975461

RESUMO

Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Apoptose/genética , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Biomarcadores , Caspase 9/metabolismo , Citocromos c/metabolismo , Citocromos c/uso terapêutico , Resistência a Múltiplos Medicamentos , Humanos , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico , RNA Longo não Codificante/genética , RNA Interferente Pequeno/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
8.
Nutr. clín. diet. hosp ; 42(3): 110-121, Ago 2022. tab, graf
Artigo em Inglês | IBECS | ID: ibc-207355

RESUMO

Introduction: Cancer is the leading cause of death in theworld, with approximately 10 million deaths expected by2020. Several approaches are used in cancer management.However, the cost is one of the main obstacles in cancer therapy as well as side effects in sufferers. Caulerpa racemosa is a type of seaweed that is naturally abundant in theIndonesian sea. Recently, there has been much research onthe anticancer effects of Caulerpa sp. This study aims to findthe potency of Sea grapes extract (Caulerpa racemosa) in thetreatment of cancer and its mechanisms.Method: A review of the literature was constructed on thepotential of the C. racemosa extract with the PICOS criteriaand the data were extracted from ‘PUBMED’, ‘ScienceDirect’and ‘SpringerLink’. The search method was using a booleanoperator with the main keywords ‘Caulerpa racemosa’, ‘cancer’, and ‘Management’.Results: The main results were 8 articles including in vitroand in vivo experimental studies based on inclusion criteria.Several studies (n=8) revealed the potency of C. racemosaextract as an anticancer agent through various activities, suchas antiproliferative, apoptotic, antioxidant, cytotoxic activity,and inhibition of tumor progression genes, DNMT, and upregulation of proapoptotic genes, including BAX, P53, Caspase-3, Caspase-8, and Caspase-9.Discussion: C. racemosa possesses several potent antioxidant substances, along with gene regulation activities and in hibition of cell line proliferation. Seaweeds has been usedwidely as functional food and showed minimal or no toxicitiesagainst human. With all these benefits, C. racemosa has thepotential to be commercialized as a promising diet for cancerpatients.Conclusion: Sea grapes extract (C. racemosa) has goodpotential as an anticancer agent through antiproliferationmechanisms, induction of apoptosis, cytotoxic and antioxidantactivity.(AU)


Assuntos
Humanos , Masculino , Feminino , Alimento Funcional , Caulerpa , Neoplasias , Citotoxicidade Imunológica , Fator Apoptótico 1 Ativador de Proteases , Suplementos Nutricionais , Compostos Fitoquímicos , Antineoplásicos , Antineoplásicos Fitogênicos , Alga Marinha , Técnicas In Vitro , Alimentos, Dieta e Nutrição
9.
Funct Integr Genomics ; 22(5): 965-975, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35723795

RESUMO

Myocardial ischemia-reperfusion injury (MI/RI) is a leading cause of death globally. Whereas some long noncoding RNAs (lncRNAs) are known to participate in the progression of MI/RI, the role of urothelial carcinoma associated 1 (UCA1) in conjunction with sevoflurane treatment remains largely unknown. H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to establish an in vitro MI/RI model, and sevoflurane was then added. Cell viability, apoptosis, SOD activity, and MDA levels were measured. Levels of inflammatory cytokines and methylation of apoptosis protease-activating factor 1 (APAF1) were determined. Interactions among lncRNA UCA1, enhancer of zeste homologue 2 (EZH2), DNA methyltransferase-1 (DNMT1), and APAF1 were analyzed. After H/R treatment, the viability of H9C2 cardiomyocytes decreased and apoptosis rate, oxidative stress factor levels, inflammatory cytokine levels, and apoptosis-related protein levels all increased. Sevoflurane treatment reversed these changes. LncRNA UCA1 knockdown attenuated the therapeutic effect of sevoflurane on H/R-treated cardiomyocytes, and silencing of APAF1 reversed this role of UCA1 knockdown. Moreover, lncRNA UCA1 recruited DNMT1 through EZH2, thus promoting methylation of the APAF1 promoter region. LncRNA UCA1 recruits DNMT1 to promote methylation of the APAF1 promoter through EZH2, thus strengthening the protective effect of sevoflurane on H/R-induced cardiomyocyte injury.


Assuntos
Carcinoma de Células de Transição , MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Citocinas/metabolismo , Citocinas/farmacologia , DNA/farmacologia , Humanos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Peptídeo Hidrolases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sevoflurano/farmacologia , Superóxido Dismutase/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Cell Biol Int ; 46(7): 1156-1168, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35293661

RESUMO

The Apaf-1 interacting protein (APIP), a ubiquitously expressed antiapoptotic molecule, is aberrantly expressed and of great significance in various cancers. However, little is known regarding the potential value and underlying mechanisms of APIP in prostate cancer. Here, we demonstrated that APIP expression is significantly upregulated in prostate cancer cell lines. APIP overexpression promoted tumor cell proliferation and migration and induced extracellular regulated protein kinases 1/2 (ERK1/2) activation. Pharmacological inhibition of ERK1/2 signaling reversed APIP-induced increase in cell proliferation and migration induced by APIP overexpression. Expression of APIP was hampered by miR-146a-3p. A dual luciferase reporter gene assay identified the regulatory relationship between APIP and miR-146a-3p in prostate cancer, suggesting that APIP is a direct target of miR-146a-3p. miR-146a-3p reduced cell proliferation and migration in prostate cancer. Furthermore, miR-146a-3p inhibited ERK1/2 activation. Application of an ERK1/2 inhibitor reversed the increase in cell proliferation and migration induced by miR-146a-3p inhibition. In summary, this study focused on the role of APIP in regulating cell growth and migration and proposes a theoretical basis for APIP as a promising biomarker in prostate cancer development.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/metabolismo , MicroRNAs , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo
11.
Sci Rep ; 12(1): 2489, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169175

RESUMO

Since the development of ART, embryos have been cultured at 37 °C in an attempt to mimic the in vivo conditions and the average body temperature of an adult. However, a gradient of temperatures within the reproductive tract has been demonstrated in humans and several other mammalian species. Therefore, the aim of this study was to evaluate the effects of temperature variation treatments on mouse embryo quality through morphokinetic events, blastocyst morphology, the relative gene expression of Igf2, Bax, Bcl2 and Apaf1 and the metabolomics of individual culture media. Study groups consisted of 2 circadian treatments, T1 with embryos being cultured at 37 °C during the day and 35.5 °C during the night, T2 with 38.5 °C during the day and 37 °C during the night and a control group with constant 37 °C. Our main findings are that the lower-temperature group (T1) showed a consistent negative effect on mouse embryo development with "slow" cleaving embryos, poor-quality blastocysts, a higher expression of the apoptotic gene Apaf1, and a significantly different set of amino acids representing a more stressed metabolism. On the other hand, our higher-temperature group (T2) showed similar results to the control group, with no adverse effects on blastocyst viability.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Temperatura , Animais , Fator Apoptótico 1 Ativador de Proteases , Blastocisto/fisiologia , Sobrevivência Celular , Ritmo Circadiano/fisiologia , Meios de Cultura/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica , Fator de Crescimento Insulin-Like II , Camundongos , Camundongos Endogâmicos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2
12.
Mult Scler Relat Disord ; 58: 103502, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35030371

RESUMO

BACKGROUND: Emerging evidence suggests that dysregulated apoptosis might be implicated in the pathogenesis of multiple sclerosis (MS). The aim of the current study was to evaluate the expression of Apoptotic protease activating factor-1 (APAF1) mRNA and its potential regulator miR-484 in relapsing remitting MS patients (RRMS) and to investigate their role as potential disease biomarkers. METHODS: After Bioinformatic analysis was conducted and revealed miR-484 involvement in the regulation of APAF-1 gene expression. Reverse Transcription-quantitative Real-Time PCR (RT-qPCR) was performed to detect the expression levels of APAF-1 and miR-484 in the peripheral blood mononuclear cells (PBMCs) of 34 RRMS patients recruited from the MS clinic of kasr al ainy hospital- faculty of medicine-Egypt and 34 healthy controls. RESULTS: APAF-1 mRNA was significantly downregulated in patients whereas miR-484 expression was upregulated compared to controls (p < 0.01). Sensitivity and specificity of APAF-1 and miR-484 to diagnose MS was (85.3%, 76.5%) and (88.2% and 86.7%) respectively. CONCLUSION: APAF-1 and miR-484 could play a role as potential MS diagnostic biomarkers. However, absence of a control group of patients with other inflammatory diseases in our study warrants further research to corroborate our findings.


Assuntos
MicroRNAs , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Fator Apoptótico 1 Ativador de Proteases , Humanos , Leucócitos Mononucleares , MicroRNAs/genética , Esclerose Múltipla/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Peptídeo Hidrolases
13.
Bioengineered ; 13(1): 27-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898374

RESUMO

Wounds are soft tissue injuries, which are difficult to heal and can easily lead to other skin diseases. Bone marrow mesenchymal stem cells (BMSCs) and the secreted exosomes play a key role in skin wound healing. This study aims to clarify the effects and mechanisms of exosomes derived from BMSCs in wound healing. Exosomes were extracted from the supernatant of the BMSCs. The expression of the micro-RNA miR-93-3p was determined by qRT-PCR analysis. HaCaT cells were exposed to hydrogen peroxide (H2O2) to establish a skin lesion model. MTT, flow cytometry, and transwell assays were conducted to determine cellular functions. The binding relationship between miR-93-3p and apoptotic peptidase activating factor 1 (APAF1) was measured using a dual luciferase reporter gene assay. The results showed that BMSC-derived exosomes or BMSC-exos promoted proliferation and migration and suppressed apoptosis in HaCaT cells damaged by H2O2. However, the depletion of miR-93-3p in BMSC-exos antagonized the effects of BMSC-exos on HaCaT cells. In addition, APAF1 was identified as a target of miR-93-3p. Overexpression of APAF1 induced the dysfunction of HaCaT cells. Collectively, the results indicate that BMSC-derived exosomes promote skin wound healing via the miR-93-3p/APAF1 axis. This finding may help establish a new therapeutic strategy for skin wound healing.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Exossomos/transplante , Peróxido de Hidrogênio/efeitos adversos , Queratinócitos/citologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Regiões 3' não Traduzidas , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Exossomos/genética , Células HaCaT , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/química , Modelos Biológicos , Cicatrização
14.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830349

RESUMO

Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.


Assuntos
Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspases/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Homeostase/genética , Humanos , Microscopia Eletrônica/história , Microscopia Eletrônica/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Biochem Biophys Res Commun ; 577: 45-51, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34507064

RESUMO

Liver cancer is one of the most common malignancies that is difficult to treat due to late diagnosis and chemo-resistance. In the present study, we developed and validated a cell based split nanoLuc biosensor to monitor the Apaf1-Apaf1 interactions in response to apoptosis-inducing drugs such as cisplatin. We showed that the activity of split nanoLuc is reconstituted only in response to apoptotic inducer, cisplatin and in a dose-dependent manner. Apaf1 mutants which were unable to oligomerize failed to recover nanoLuc activity while constitutively active variant increased the nanoLuc activity. Generation of Apaf1 knockout HepG2 and treatment with cisplatin showed dramatic reduction in cell death suggesting that cisplatin mainly targets liver cancer cells through apoptosis. As the natural products are potent sources of compounds for adjuvant therapy, we screened a collection of natural products and identified lentinan as an inducer of apoptosome formation, a key step for induction of apoptosis. Lentinan is a polysaccharide with antitumor, pro-apoptotic properties that functions with poorly understood mechanisms. Lentinan was shown to have cytotoxic effects with the IC50 of 650 µM. Sub-lethal lentinan concentration doubled the nanoLuc activity when co-treated with cisplatin. We also showed that lentinan hugely reduced the dose of cisplatin to induce certain amount of death and that lentinan co-treatment with cisplatin enhanced the Apaf1 transcription in HepG2 cells while lentinan or cisplatin alone failed to alter the transcription. In addition, lentinan and cisplatin co-treatment induced mitochondrial depolarization. This suggested that lentinan combinatorial therapy with cisplatin engaged a different signalling pathway to kill the liver cancer cells and that adjuvant therapy with lentinan can reduce the dose of cisplatin and thus reduce the possibility of chemo-resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Técnicas Biossensoriais/métodos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Células Hep G2 , Humanos , Lentinano/administração & dosagem , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação
16.
Bull Exp Biol Med ; 171(3): 357-361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34297287

RESUMO

We studied the effect of technogenic radiation on the degree of promoter methylation in genes involved in apoptosis in blood lymphocytes of workers exposed to long-term γ-radiation during their professional activities. Blood samples for the analysis were obtained from 11 conventionally healthy men aged from 54 to 71 years (mean 66 years), workers of the Siberian Group of Chemical Enterprises working experience from 27 to 40 years (mean 30 years); the external exposure dose was 175.88 mSv (158.20-207.81 mSv). In all examined subjects, the degree of methylation of the promoters of apoptosis-related genes ranged from 0.22 to 50.00%. A correlation was found between the degree of methylation of BCLAF1 promoters (p=0.035) with the age of workers, BAX promoters (p=0.0289) with high content of aberrant cells, and APAF1 promoters (p=0.0152) with increased number of dicentric chromosomes. A relationship was found between the dose of external irradiation and the degree of methylation of gene promoters of BAD (p=0.0388), BID (р=0.0426), and HRK (р=0.0101) genes.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Metilação de DNA , Epigênese Genética , Linfócitos/efeitos da radiação , Exposição Ocupacional/efeitos adversos , Regiões Promotoras Genéticas , Exposição à Radiação/efeitos adversos , Idoso , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Aberrações Cromossômicas/classificação , Raios gama/efeitos adversos , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Radiometria , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sibéria , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
17.
Bioengineered ; 12(1): 4385-4396, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34304702

RESUMO

Myocardial ischemia/hypoxia-reperfusion injury mediates the progression of multiple cardiovascular diseases. It has been reported that knockdown of adaptor protein containing a PH domain, PTB domain and leucine zipper motif 1 (APPL1) is a significant factor for the progression of myocardial injury. However, the role of APPL1 in myocardial ischemia remains unclear. Hence, the aim of the present study was to investigate the specific mechanism underlying the role of APPL1 in myocardial ischemia.In our study, the mRNA level of APPL1 was detected by quantitative real-time PCR (RT-qPCR). The expressions of APPL1, Apoptotic protease activating factor-1 (APAF-1), cleaved caspase9 and other inflammation- and apoptosis-related proteins were determined by western blotting. The secretion of inflammatory cytokines and lactate dehydrogenase (LDH) levels were measured by commercial assay kits. The H9C2 cell viability was analyzed by cell counting kit-8 (CCK-8) assay. The apoptosis rate of H9C2 cells was analyzed by TUNEL assay. The interaction between APPL1 and APAF-1/caspase9 was determined by Immunoprecipitation (IP).Our findings demonstrated that APPL1 was low expressed in myocardial ischemia tissues and cells. APPL1 knockdown suppressed the viability of myocardial ischemia cells and aggravated hypoxia/reperfusion-induced LDH hypersecretion, inflammation and apoptosis. In addition, the overexpression of APPL1 induced inactivation of APAF-1/Caspase9 signaling pathway. Significantly, APAF1 inhibitor reversed the effect of APPL1 knockdown on viability, LDH secretion, inflammation and apoptosis.We conclude that APPL1 inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of APAF-1/Caspase9 signaling pathway. Hence, APPL1 may be a novel and effective target for the treatment of myocardial ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/genética , Linhagem Celular , Coração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Ratos , Transdução de Sinais/genética
18.
Biochimie ; 190: 91-110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34298080

RESUMO

Deregulation of apoptosis is associated with various pathologies, such as neurodegenerative disorders at one end of the spectrum and cancer at the other end. Generally speaking, differentiated cells like cardiomyocytes, skeletal myocytes and neurons exhibit low levels of Apaf-1 (Apoptotic protease activating factor 1) protein suggesting that down-regulation of Apaf-1 is an important event contributing to the resistance of these cells to apoptosis. Nonetheless, upregulation of Apaf-1 has not emerged as a common phenomenon in pathologies associated with enhanced neuronal cell death, i.e., neurodegenerative diseases. In cancer, on the other hand, Apaf-1 downregulation is a common phenomenon, which occurs through various mechanisms including mRNA hyper-methylation, gene methylation, Apaf-1 localization in lipid rafts, inhibition by microRNAs, phosphorylation, and interaction with specific inhibitors. Due to the diversity of these mechanisms and involvement of other factors, defining the exact contribution of Apaf-1 to the development of cancer in general and neurodegenerative disorders, in particular, is complicated. The current review is an attempt to provide a comprehensive image of Apaf-1's contribution to the pathologies observed in cancer and neurodegenerative diseases with the emphasis on the therapeutic aspects of Apaf-1 as an important target in these pathologies.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/metabolismo , Neoplasias/etiologia , Doenças Neurodegenerativas/etiologia , Animais , Apoptossomas/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/agonistas , Fator Apoptótico 1 Ativador de Proteases/antagonistas & inibidores , Fator Apoptótico 1 Ativador de Proteases/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
19.
Med Oncol ; 38(8): 88, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181104

RESUMO

Drug resistance is a multifactorial process involving a variety of mechanisms and genes. Taxane drug class like Docetaxel is not effective for all types' breast cancers and presents a huge clinical challenge. To improve cancer treatment outcome, it is important to distinguish which proteins can kill the cancer cells and whether the expression levels of these proteins affect treatment. Cancer cells are wildly known to be protected from apoptosis, due to low level of apoptotic protease activating factor-1 (Apaf-1) compared with normal cells. Apaf-1 is an essential protein that defines whether cytochrome c released form mitochondria remains stable or degrades. According to this hypothesis, increasing of Apaf-1 expression in MCF7 breast cancer cells was performed and Docetaxel efficacy examined. The immunoassay techniques were used to investigate Apaf-1 and cytochrome c levels, and different apoptosis assay methods applied to better understand the effect of Apaf-1 expression levels in cellular response to apoptotic stimuli by Docetaxel. Our results determined that cytoplasmic cytochrome c level elevated along with increasing Apaf-1 and MCF7 cells were sensitised to Docetaxel, suggesting that loss of Apaf-1 may cause Docetaxel-resistance in breast cancer cells through less apoptosome formation. ROS level increased in cells transfected with Apaf-1 and induced mitochondrial permeability for cytochrome c release, which subsequently promoted apoptosome formation, intrinsic apoptosis and ATP depletion.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/biossíntese , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Docetaxel/farmacologia , Taxoides/farmacologia , Regulação para Cima/efeitos dos fármacos , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...